训练概览

为什么要微调?

Cross Encoder 模型在检索和重排序搜索堆栈中经常用作第二阶段重排序器。在这种情况下,Cross Encoder 会对检索器(可以是Sentence Transformer 模型)提供的最佳 X 个候选进行重排序。为了避免重排序器模型降低您用例的性能,对其进行微调至关重要。重排序器总是只有一个输出标签。

此外,Cross Encoder 模型也可以用作对分类器。例如,在自然语言推理数据上训练的模型可以用于将文本对分类为“矛盾”、“蕴含”和“中性”。对分类器通常有多个输出标签。

请参阅训练示例,了解您可以采用的常见真实世界应用的众多训练脚本。

训练组件

训练 Cross Encoder 模型涉及 4 到 6 个组件,就像训练 Sentence Transformer 模型一样。

模型

Cross Encoder 模型通过加载预训练的transformers模型并使用序列分类头进行初始化。如果模型本身没有这样的头,它将自动添加。因此,初始化 Cross Encoder 模型相当简单。

from sentence_transformers import CrossEncoder

# This model already has a sequence classification head
model = CrossEncoder("cross-encoder/ms-marco-MiniLM-L6-v2")
# And this model does not, so it will be added automatically
model = CrossEncoder("google-bert/bert-base-uncased")

提示

您可以在Cross Encoder > 预训练模型文档中找到预训练的重排序模型。

对于其他模型,最强的预训练模型通常是“编码器模型”,即训练用于为输入生成有意义的 token 嵌入的模型。您可以在这里找到强有力的候选模型:

考虑寻找针对您的语言和/或领域设计的 BaseModel。例如,klue/bert-base 在韩语上将比google-bert/bert-base-uncased表现更好。

数据集

CrossEncoderTrainer 使用 datasets.Dataset(一个数据集)或 datasets.DatasetDict 实例(多个数据集,另请参阅多数据集训练)进行训练和评估。

如果您想从 Hugging Face Datasets 加载数据,那么您应该使用 datasets.load_dataset()

from datasets import load_dataset

train_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="train")
eval_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split="dev")

print(train_dataset)
"""
Dataset({
    features: ['premise', 'hypothesis', 'label'],
    num_rows: 942069
})
"""

某些数据集(包括sentence-transformers/all-nli)需要您提供一个“子集”以及数据集名称。sentence-transformers/all-nli 有 4 个子集,每个子集都有不同的数据格式:pairpair-classpair-scoretriplet

注意

许多与 Sentence Transformers 无缝协作的 Hugging Face 数据集都已标记为sentence-transformers,让您可以通过浏览https://huggingface.co/datasets?other=sentence-transformers轻松找到它们。我们强烈建议您浏览这些数据集,以找到可能对您的任务有用的训练数据集。

如果您有常见文件格式的本地数据,那么您可以使用 datasets.load_dataset() 轻松加载这些数据

from datasets import load_dataset

dataset = load_dataset("csv", data_files="my_file.csv")

from datasets import load_dataset

dataset = load_dataset("json", data_files="my_file.json")

如果您有需要额外预处理的本地数据,我的建议是使用 datasets.Dataset.from_dict() 和一个列表字典来初始化您的数据集,如下所示:

from datasets import Dataset

anchors = []
positives = []
# Open a file, do preprocessing, filtering, cleaning, etc.
# and append to the lists

dataset = Dataset.from_dict({
    "anchor": anchors,
    "positive": positives,
})

字典中的每个键都将成为结果数据集中的一个列。

数据集格式

您的数据集格式必须与您的损失函数匹配(或者您选择的损失函数必须与您的数据集格式和模型匹配)。验证数据集格式和模型是否与损失函数兼容涉及三个步骤:

  1. 根据损失概览表,所有未命名为“label”、“labels”、“score”或“scores”的列都被视为输入。剩余列的数量必须与您选择的损失函数的有效输入数量匹配。这些列的名称是不相关的,只有顺序才重要。

  2. 如果您的损失函数根据损失概览表需要标签,那么您的数据集必须有一个名为“label”、“labels”、“score”或“scores”的列。该列将自动用作标签。

  3. 模型输出标签的数量与损失概览表要求损失所需的数量匹配。

例如,给定一个包含列["text1", "text2", "label"]的数据集,其中“label”列包含范围从0到1的浮点相似度分数,并且模型输出1个标签,我们可以将其与BinaryCrossEntropyLoss一起使用,因为:

  1. 数据集有一个“label”列,这是此损失函数所必需的。

  2. 数据集有 2 个非标签列,这正是此损失函数所需的数量。

  3. 模型有 1 个输出标签,这正是此损失函数所必需的。

如果您的列顺序不正确,请务必使用Dataset.select_columns重新排序您的数据集列。例如,如果您的数据集包含["good_answer", "bad_answer", "question"]作为列,那么该数据集在技术上可以与需要(锚点、正例、负例)三元组的损失一起使用,但good_answer列将被视为锚点,bad_answer视为正例,question视为负例。

此外,如果您的数据集有不必要的列(例如 sample_id、metadata、source、type),您应该使用Dataset.remove_columns移除这些列,否则它们将被用作输入。您也可以使用Dataset.select_columns仅保留所需的列。

难负例挖掘

训练 CrossEncoder 模型的成功往往取决于负例的质量,即查询-负例分数应该很低的段落。负例可以分为两种类型:

  • 软负例:完全不相关的段落。

  • 难负例:看起来可能与查询相关,但实际上不相关的段落。

一个简洁的例子是:

  • 查询:苹果公司在哪里成立?

  • 软负例:Cache 河大桥是横跨阿肯色州核桃岭和帕拉古尔德之间 Cache 河的 Parker 桁架桥。

  • 难负例:富士苹果是一种在 20 世纪 30 年代末培育并在 1962 年上市的苹果品种。

最强的 CrossEncoder 模型通常被训练用于识别难负例,因此能够“挖掘”难负例非常有价值。Sentence Transformers 提供了一个强大的mine_hard_negatives()函数,可以在给定查询-答案对数据集的情况下提供帮助。

from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import mine_hard_negatives

# Load the GooAQ dataset: https://huggingface.co/datasets/sentence-transformers/gooaq
train_dataset = load_dataset("sentence-transformers/gooaq", split=f"train").select(range(100_000))
print(train_dataset)

# Mine hard negatives using a very efficient embedding model
embedding_model = SentenceTransformer("sentence-transformers/static-retrieval-mrl-en-v1", device="cpu")
hard_train_dataset = mine_hard_negatives(
    train_dataset,
    embedding_model,
    num_negatives=5,  # How many negatives per question-answer pair
    range_min=10,  # Skip the x most similar samples
    range_max=100,  # Consider only the x most similar samples
    max_score=0.8,  # Only consider samples with a similarity score of at most x
    absolute_margin=0.1,  # Anchor-negative similarity is at least x lower than anchor-positive similarity
    relative_margin=0.1,  # Anchor-negative similarity is at most 1-x times the anchor-positive similarity, e.g. 90%
    sampling_strategy="top",  # Sample the top negatives from the range
    batch_size=4096,  # Use a batch size of 4096 for the embedding model
    output_format="labeled-pair",  # The output format is (query, passage, label), as required by BinaryCrossEntropyLoss
    use_faiss=True,  # Using FAISS is recommended to keep memory usage low (pip install faiss-gpu or pip install faiss-cpu)
)
print(hard_train_dataset)
print(hard_train_dataset[1])
点击查看此脚本的输出。
Dataset({
    features: ['question', 'answer'],
    num_rows: 100000
})

Batches: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████| 22/22 [00:01<00:00, 12.74it/s]
Batches: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████| 25/25 [00:00<00:00, 37.50it/s]
Querying FAISS index: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████| 7/7 [00:18<00:00,  2.66s/it]
Metric       Positive       Negative     Difference
Count         100,000        436,925
Mean           0.5882         0.4040         0.2157
Median         0.5989         0.4024         0.1836
Std            0.1425         0.0905         0.1013
Min           -0.0514         0.1405         0.1014
25%            0.4993         0.3377         0.1352
50%            0.5989         0.4024         0.1836
75%            0.6888         0.4681         0.2699
Max            0.9748         0.7486         0.7545
Skipped 2,420,871 potential negatives (23.97%) due to the absolute_margin of 0.1.
Skipped 43 potential negatives (0.00%) due to the max_score of 0.8.
Could not find enough negatives for 63075 samples (12.62%). Consider adjusting the range_max, range_min, absolute_margin, relative_margin and max_score parameters if you'd like to find more valid negatives.
Dataset({
    features: ['question', 'answer', 'label'],
    num_rows: 536925
})

{
    'question': 'how to transfer bookmarks from one laptop to another?',
    'answer': 'Using an External Drive Just about any external drive, including a USB thumb drive, or an SD card can be used to transfer your files from one laptop to another. Connect the drive to your old laptop; drag your files to the drive, then disconnect it and transfer the drive contents onto your new laptop.',
    'label': 0
}

损失函数

损失函数量化了模型在给定数据批次上的表现,允许优化器更新模型权重以产生更有利(即更低)的损失值。这是训练过程的核心。

遗憾的是,没有一个单一的损失函数适用于所有用例。相反,使用哪种损失函数在很大程度上取决于您可用的数据和您的目标任务。请参阅数据集格式了解哪些数据集适用于哪些损失函数。此外,损失概览将是您了解选项的最佳帮手。

大多数损失函数都可以通过仅使用您正在训练的CrossEncoder以及一些可选参数进行初始化,例如:

from datasets import load_dataset
from sentence_transformers import CrossEncoder
from sentence_transformers.cross_encoder.losses import MultipleNegativesRankingLoss

# Load a model to train/finetune
model = CrossEncoder("xlm-roberta-base", num_labels=1) # num_labels=1 is for rerankers

# Initialize the MultipleNegativesRankingLoss
# This loss requires pairs of related texts or triplets
loss = MultipleNegativesRankingLoss(model)

# Load an example training dataset that works with our loss function:
train_dataset = load_dataset("sentence-transformers/gooaq", split="train")

训练参数

CrossEncoderTrainingArguments 类可用于指定影响训练性能以及定义跟踪/调试参数的参数。尽管它是可选的,但强烈建议尝试各种有用的参数。



以下是CrossEncoderTrainingArguments如何初始化的示例:

from sentence_transformers.cross_encoder import CrossEncoderTrainingArguments

args = CrossEncoderTrainingArguments(
    # Required parameter:
    output_dir="models/reranker-MiniLM-msmarco-v1",
    # Optional training parameters:
    num_train_epochs=1,
    per_device_train_batch_size=16,
    per_device_eval_batch_size=16,
    learning_rate=2e-5,
    warmup_ratio=0.1,
    fp16=True,  # Set to False if you get an error that your GPU can't run on FP16
    bf16=False,  # Set to True if you have a GPU that supports BF16
    batch_sampler=BatchSamplers.NO_DUPLICATES,  # losses that use "in-batch negatives" benefit from no duplicates
    # Optional tracking/debugging parameters:
    eval_strategy="steps",
    eval_steps=100,
    save_strategy="steps",
    save_steps=100,
    save_total_limit=2,
    logging_steps=100,
    run_name="reranker-MiniLM-msmarco-v1",  # Will be used in W&B if `wandb` is installed
)

评估器

您可以为CrossEncoderTrainer提供一个eval_dataset以在训练期间获取评估损失,但在训练期间获取更具体的指标可能也很有用。为此,您可以使用评估器在训练之前、期间或之后使用有用的指标评估模型的性能。您可以同时使用eval_dataset和评估器,或其中一个,或两者都不用。它们根据eval_strategyeval_steps训练参数进行评估。

以下是 Sentence Transformers 为 Cross Encoder 模型实现的评估器:

评估器

所需数据

CrossEncoderClassificationEvaluator

带有类别标签(二元或多类)的对。

CrossEncoderCorrelationEvaluator

带有相似度分数的对。

CrossEncoderNanoBEIREvaluator

无需数据。

CrossEncoderRerankingEvaluator

字典列表,格式为{'query': '...', 'positive': [...], 'negative': [...]}。负例可以使用mine_hard_negatives()进行挖掘。

此外,应使用SequentialEvaluator将多个评估器合并为一个评估器,然后可以将其传递给CrossEncoderTrainer

有时,您没有所需评估数据来自行准备这些评估器之一,但您仍然希望跟踪模型在某些常见基准上的表现。在这种情况下,您可以将这些评估器与 Hugging Face 的数据一起使用。

from sentence_transformers import CrossEncoder
from sentence_transformers.cross_encoder.evaluation import CrossEncoderNanoBEIREvaluator

# Load a model
model = CrossEncoder("cross-encoder/ms-marco-MiniLM-L6-v2")

# Initialize the evaluator. Unlike most other evaluators, this one loads the relevant datasets
# directly from Hugging Face, so there's no mandatory arguments
dev_evaluator = CrossEncoderNanoBEIREvaluator()
# You can run evaluation like so:
# results = dev_evaluator(model)

CrossEncoderRerankingEvaluator准备数据可能很困难,因为除了查询-正例数据之外,您还需要负例。

mine_hard_negatives()函数有一个方便的include_positives参数,可以设置为True以同时挖掘正例文本。当将其作为documents(必须是 1. 已排序且 2. 包含正例)提供给CrossEncoderRerankingEvaluator时,评估器将不仅评估 CrossEncoder 的重排序性能,还将评估用于挖掘的嵌入模型的原始排序。

例如:

CrossEncoderRerankingEvaluator: Evaluating the model on the gooaq-dev dataset:
Queries:  1000     Positives: Min 1.0, Mean 1.0, Max 1.0   Negatives: Min 49.0, Mean 49.1, Max 50.0
          Base  -> Reranked
MAP:      53.28 -> 67.28
MRR@10:   52.40 -> 66.65
NDCG@10:  59.12 -> 71.35

请注意,默认情况下,如果您使用带有documentsCrossEncoderRerankingEvaluator,评估器将用所有正例进行重排序,即使它们不在文档中。这对于从评估器获得更强的信号很有用,但确实会给出略微不切实际的性能。毕竟,最大性能现在是 100,而通常它受限于第一阶段检索器是否实际检索到正例。

您可以通过在初始化CrossEncoderRerankingEvaluator时设置always_rerank_positives=False来启用实际行为。使用这种实际的两阶段性能重复相同的脚本会产生:

CrossEncoderRerankingEvaluator: Evaluating the model on the gooaq-dev dataset:
Queries:  1000     Positives: Min 1.0, Mean 1.0, Max 1.0   Negatives: Min 49.0, Mean 49.1, Max 50.0
          Base  -> Reranked
MAP:      53.28 -> 66.12
MRR@10:   52.40 -> 65.61
NDCG@10:  59.12 -> 70.10
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from sentence_transformers.cross_encoder import CrossEncoder
from sentence_transformers.cross_encoder.evaluation import CrossEncoderRerankingEvaluator
from sentence_transformers.util import mine_hard_negatives

# Load a model
model = CrossEncoder("cross-encoder/ms-marco-MiniLM-L6-v2")

# Load the GooAQ dataset: https://huggingface.co/datasets/sentence-transformers/gooaq
full_dataset = load_dataset("sentence-transformers/gooaq", split=f"train").select(range(100_000))
dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12)
train_dataset = dataset_dict["train"]
eval_dataset = dataset_dict["test"]
print(eval_dataset)
"""
Dataset({
    features: ['question', 'answer'],
    num_rows: 1000
})
"""

# Mine hard negatives using a very efficient embedding model
embedding_model = SentenceTransformer("sentence-transformers/static-retrieval-mrl-en-v1", device="cpu")
hard_eval_dataset = mine_hard_negatives(
    eval_dataset,
    embedding_model,
    corpus=full_dataset["answer"],  # Use the full dataset as the corpus
    num_negatives=50,  # How many negatives per question-answer pair
    batch_size=4096,  # Use a batch size of 4096 for the embedding model
    output_format="n-tuple",  # The output format is (query, positive, negative1, negative2, ...) for the evaluator
    include_positives=True,  # Key: Include the positive answer in the list of negatives
    use_faiss=True,  # Using FAISS is recommended to keep memory usage low (pip install faiss-gpu or pip install faiss-cpu)
)
print(hard_eval_dataset)
"""
Dataset({
    features: ['question', 'answer', 'negative_1', 'negative_2', 'negative_3', 'negative_4', 'negative_5', 'negative_6', 'negative_7', 'negative_8', 'negative_9', 'negative_10', 'negative_11', 'negative_12', 'negative_13', 'negative_14', 'negative_15', 'negative_16', 'negative_17', 'negative_18', 'negative_19', 'negative_20', 'negative_21', 'negative_22', 'negative_23', 'negative_24', 'negative_25', 'negative_26', 'negative_27', 'negative_28', 'negative_29', 'negative_30', 'negative_31', 'negative_32', 'negative_33', 'negative_34', 'negative_35', 'negative_36', 'negative_37', 'negative_38', 'negative_39', 'negative_40', 'negative_41', 'negative_42', 'negative_43', 'negative_44', 'negative_45', 'negative_46', 'negative_47', 'negative_48', 'negative_49', 'negative_50'],
    num_rows: 1000
})
"""

reranking_evaluator = CrossEncoderRerankingEvaluator(
    samples=[
        {
            "query": sample["question"],
            "positive": [sample["answer"]],
            "documents": [sample[column_name] for column_name in hard_eval_dataset.column_names[2:]],
        }
        for sample in hard_eval_dataset
    ],
    batch_size=32,
    name="gooaq-dev",
)
# You can run evaluation like so
results = reranking_evaluator(model)
"""
CrossEncoderRerankingEvaluator: Evaluating the model on the gooaq-dev dataset:
Queries:  1000     Positives: Min 1.0, Mean 1.0, Max 1.0   Negatives: Min 49.0, Mean 49.1, Max 50.0
          Base  -> Reranked
MAP:      53.28 -> 67.28
MRR@10:   52.40 -> 66.65
NDCG@10:  59.12 -> 71.35
"""
# {'gooaq-dev_map': 0.6728370126462222, 'gooaq-dev_mrr@10': 0.6665190476190477, 'gooaq-dev_ndcg@10': 0.7135068904582963, 'gooaq-dev_base_map': 0.5327714512001362, 'gooaq-dev_base_mrr@10': 0.5239674603174603, 'gooaq-dev_base_ndcg@10': 0.5912299141913905}
from datasets import load_dataset
from sentence_transformers import CrossEncoder
from sentence_transformers.cross_encoder.evaluation import CrossEncoderCorrelationEvaluator

# Load a model
model = CrossEncoder("cross-encoder/stsb-TinyBERT-L4")

# Load the STSB dataset (https://huggingface.co/datasets/sentence-transformers/stsb)
eval_dataset = load_dataset("sentence-transformers/stsb", split="validation")
pairs = list(zip(eval_dataset["sentence1"], eval_dataset["sentence2"]))

# Initialize the evaluator
dev_evaluator = CrossEncoderCorrelationEvaluator(
    sentence_pairs=pairs,
    scores=eval_dataset["score"],
    name="sts_dev",
)
# You can run evaluation like so:
# results = dev_evaluator(model)
from datasets import load_dataset
from sentence_transformers import CrossEncoder
from sentence_transformers.evaluation import TripletEvaluator, SimilarityFunction

# Load a model
model = CrossEncoder("cross-encoder/nli-deberta-v3-base")

# Load triplets from the AllNLI dataset (https://huggingface.co/datasets/sentence-transformers/all-nli)
max_samples = 1000
eval_dataset = load_dataset("sentence-transformers/all-nli", "pair-class", split=f"dev[:{max_samples}]")

# Create a list of pairs, and map the labels to the labels that the model knows
pairs = list(zip(eval_dataset["premise"], eval_dataset["hypothesis"]))
label_mapping = {0: 1, 1: 2, 2: 0}
labels = [label_mapping[label] for label in eval_dataset["label"]]

# Initialize the evaluator
cls_evaluator = CrossEncoderClassificationEvaluator(
    sentence_pairs=pairs,
    labels=labels,
    name="all-nli-dev",
)
# You can run evaluation like so:
# results = cls_evaluator(model)

警告

使用分布式训练时,评估器仅在第一个设备上运行,与训练和评估数据集不同,后者在所有设备上共享。

训练器

CrossEncoderTrainer 是所有先前组件的集合点。我们只需为训练器指定模型、训练参数(可选)、训练数据集、评估数据集(可选)、损失函数、评估器(可选),然后就可以开始训练了。让我们看一下一个将所有这些组件结合在一起的脚本:

import logging
import traceback

from datasets import load_dataset

from sentence_transformers.cross_encoder import (
    CrossEncoder,
    CrossEncoderModelCardData,
    CrossEncoderTrainer,
    CrossEncoderTrainingArguments,
)
from sentence_transformers.cross_encoder.evaluation import CrossEncoderNanoBEIREvaluator
from sentence_transformers.cross_encoder.losses import CachedMultipleNegativesRankingLoss

# Set the log level to INFO to get more information
logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO)

model_name = "microsoft/MiniLM-L12-H384-uncased"
train_batch_size = 64
num_epochs = 1
num_rand_negatives = 5  # How many random negatives should be used for each question-answer pair

# 1a. Load a model to finetune with 1b. (Optional) model card data
model = CrossEncoder(
    model_name,
    model_card_data=CrossEncoderModelCardData(
        language="en",
        license="apache-2.0",
        model_name="MiniLM-L12-H384 trained on GooAQ",
    ),
)
print("Model max length:", model.max_length)
print("Model num labels:", model.num_labels)

# 2. Load the GooAQ dataset: https://huggingface.co/datasets/sentence-transformers/gooaq
logging.info("Read the gooaq training dataset")
full_dataset = load_dataset("sentence-transformers/gooaq", split="train").select(range(100_000))
dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12)
train_dataset = dataset_dict["train"]
eval_dataset = dataset_dict["test"]
logging.info(train_dataset)
logging.info(eval_dataset)

# 3. Define our training loss.
loss = CachedMultipleNegativesRankingLoss(
    model=model,
    num_negatives=num_rand_negatives,
    mini_batch_size=32,  # Informs the memory usage
)

# 4. Use CrossEncoderNanoBEIREvaluator, a light-weight evaluator for English reranking
evaluator = CrossEncoderNanoBEIREvaluator(
    dataset_names=["msmarco", "nfcorpus", "nq"],
    batch_size=train_batch_size,
)
evaluator(model)

# 5. Define the training arguments
short_model_name = model_name if "/" not in model_name else model_name.split("/")[-1]
run_name = f"reranker-{short_model_name}-gooaq-cmnrl"
args = CrossEncoderTrainingArguments(
    # Required parameter:
    output_dir=f"models/{run_name}",
    # Optional training parameters:
    num_train_epochs=num_epochs,
    per_device_train_batch_size=train_batch_size,
    per_device_eval_batch_size=train_batch_size,
    learning_rate=2e-5,
    warmup_ratio=0.1,
    fp16=False,  # Set to False if you get an error that your GPU can't run on FP16
    bf16=True,  # Set to True if you have a GPU that supports BF16
    # Optional tracking/debugging parameters:
    eval_strategy="steps",
    eval_steps=100,
    save_strategy="steps",
    save_steps=100,
    save_total_limit=2,
    logging_steps=50,
    logging_first_step=True,
    run_name=run_name,  # Will be used in W&B if `wandb` is installed
    seed=12,
)

# 6. Create the trainer & start training
trainer = CrossEncoderTrainer(
    model=model,
    args=args,
    train_dataset=train_dataset,
    eval_dataset=eval_dataset,
    loss=loss,
    evaluator=evaluator,
)
trainer.train()

# 7. Evaluate the final model, useful to include these in the model card
evaluator(model)

# 8. Save the final model
final_output_dir = f"models/{run_name}/final"
model.save_pretrained(final_output_dir)

# 9. (Optional) save the model to the Hugging Face Hub!
# It is recommended to run `huggingface-cli login` to log into your Hugging Face account first
try:
    model.push_to_hub(run_name)
except Exception:
    logging.error(
        f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run "
        f"`huggingface-cli login`, followed by loading the model using `model = CrossEncoder({final_output_dir!r})` "
        f"and saving it using `model.push_to_hub('{run_name}')`."
    )
import logging
import traceback

import torch
from datasets import load_dataset

from sentence_transformers import SentenceTransformer
from sentence_transformers.cross_encoder import (
    CrossEncoder,
    CrossEncoderModelCardData,
    CrossEncoderTrainer,
    CrossEncoderTrainingArguments,
)
from sentence_transformers.cross_encoder.evaluation import (
    CrossEncoderNanoBEIREvaluator,
    CrossEncoderRerankingEvaluator,
)
from sentence_transformers.cross_encoder.losses import BinaryCrossEntropyLoss
from sentence_transformers.evaluation import SequentialEvaluator
from sentence_transformers.util import mine_hard_negatives

# Set the log level to INFO to get more information
logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO)


def main():
    model_name = "answerdotai/ModernBERT-base"

    train_batch_size = 64
    num_epochs = 1
    num_hard_negatives = 5  # How many hard negatives should be mined for each question-answer pair

    # 1a. Load a model to finetune with 1b. (Optional) model card data
    model = CrossEncoder(
        model_name,
        model_card_data=CrossEncoderModelCardData(
            language="en",
            license="apache-2.0",
            model_name="ModernBERT-base trained on GooAQ",
        ),
    )
    print("Model max length:", model.max_length)
    print("Model num labels:", model.num_labels)

    # 2a. Load the GooAQ dataset: https://huggingface.co/datasets/sentence-transformers/gooaq
    logging.info("Read the gooaq training dataset")
    full_dataset = load_dataset("sentence-transformers/gooaq", split="train").select(range(100_000))
    dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12)
    train_dataset = dataset_dict["train"]
    eval_dataset = dataset_dict["test"]
    logging.info(train_dataset)
    logging.info(eval_dataset)

    # 2b. Modify our training dataset to include hard negatives using a very efficient embedding model
    embedding_model = SentenceTransformer("sentence-transformers/static-retrieval-mrl-en-v1", device="cpu")
    hard_train_dataset = mine_hard_negatives(
        train_dataset,
        embedding_model,
        num_negatives=num_hard_negatives,  # How many negatives per question-answer pair
        margin=0,  # Similarity between query and negative samples should be x lower than query-positive similarity
        range_min=0,  # Skip the x most similar samples
        range_max=100,  # Consider only the x most similar samples
        sampling_strategy="top",  # Sample the top negatives from the range
        batch_size=4096,  # Use a batch size of 4096 for the embedding model
        output_format="labeled-pair",  # The output format is (query, passage, label), as required by BinaryCrossEntropyLoss
        use_faiss=True,
    )
    logging.info(hard_train_dataset)

    # 2c. (Optionally) Save the hard training dataset to disk
    # hard_train_dataset.save_to_disk("gooaq-hard-train")
    # Load again with:
    # hard_train_dataset = load_from_disk("gooaq-hard-train")

    # 3. Define our training loss.
    # pos_weight is recommended to be set as the ratio between positives to negatives, a.k.a. `num_hard_negatives`
    loss = BinaryCrossEntropyLoss(model=model, pos_weight=torch.tensor(num_hard_negatives))

    # 4a. Define evaluators. We use the CrossEncoderNanoBEIREvaluator, which is a light-weight evaluator for English reranking
    nano_beir_evaluator = CrossEncoderNanoBEIREvaluator(
        dataset_names=["msmarco", "nfcorpus", "nq"],
        batch_size=train_batch_size,
    )

    # 4b. Define a reranking evaluator by mining hard negatives given query-answer pairs
    # We include the positive answer in the list of negatives, so the evaluator can use the performance of the
    # embedding model as a baseline.
    hard_eval_dataset = mine_hard_negatives(
        eval_dataset,
        embedding_model,
        corpus=full_dataset["answer"],  # Use the full dataset as the corpus
        num_negatives=30,  # How many documents to rerank
        batch_size=4096,
        include_positives=True,
        output_format="n-tuple",
        use_faiss=True,
    )
    logging.info(hard_eval_dataset)
    reranking_evaluator = CrossEncoderRerankingEvaluator(
        samples=[
            {
                "query": sample["question"],
                "positive": [sample["answer"]],
                "documents": [sample[column_name] for column_name in hard_eval_dataset.column_names[2:]],
            }
            for sample in hard_eval_dataset
        ],
        batch_size=train_batch_size,
        name="gooaq-dev",
        # Realistic setting: only rerank the positives that the retriever found
        # Set to True to rerank *all* positives
        always_rerank_positives=False,
    )

    # 4c. Combine the evaluators & run the base model on them
    evaluator = SequentialEvaluator([reranking_evaluator, nano_beir_evaluator])
    evaluator(model)

    # 5. Define the training arguments
    short_model_name = model_name if "/" not in model_name else model_name.split("/")[-1]
    run_name = f"reranker-{short_model_name}-gooaq-bce"
    args = CrossEncoderTrainingArguments(
        # Required parameter:
        output_dir=f"models/{run_name}",
        # Optional training parameters:
        num_train_epochs=num_epochs,
        per_device_train_batch_size=train_batch_size,
        per_device_eval_batch_size=train_batch_size,
        learning_rate=2e-5,
        warmup_ratio=0.1,
        fp16=False,  # Set to False if you get an error that your GPU can't run on FP16
        bf16=True,  # Set to True if you have a GPU that supports BF16
        dataloader_num_workers=4,
        load_best_model_at_end=True,
        metric_for_best_model="eval_gooaq-dev_ndcg@10",
        # Optional tracking/debugging parameters:
        eval_strategy="steps",
        eval_steps=1000,
        save_strategy="steps",
        save_steps=1000,
        save_total_limit=2,
        logging_steps=200,
        logging_first_step=True,
        run_name=run_name,  # Will be used in W&B if `wandb` is installed
        seed=12,
    )

    # 6. Create the trainer & start training
    trainer = CrossEncoderTrainer(
        model=model,
        args=args,
        train_dataset=hard_train_dataset,
        loss=loss,
        evaluator=evaluator,
    )
    trainer.train()

    # 7. Evaluate the final model, useful to include these in the model card
    evaluator(model)

    # 8. Save the final model
    final_output_dir = f"models/{run_name}/final"
    model.save_pretrained(final_output_dir)

    # 9. (Optional) save the model to the Hugging Face Hub!
    # It is recommended to run `huggingface-cli login` to log into your Hugging Face account first
    try:
        model.push_to_hub(run_name)
    except Exception:
        logging.error(
            f"Error uploading model to the Hugging Face Hub:\n{traceback.format_exc()}To upload it manually, you can run "
            f"`huggingface-cli login`, followed by loading the model using `model = CrossEncoder({final_output_dir!r})` "
            f"and saving it using `model.push_to_hub('{run_name}')`."
        )


if __name__ == "__main__":
    main()

回调

此 CrossEncoder 训练器集成了对各种 transformers.TrainerCallback 子类的支持,例如:

  • WandbCallback:如果安装了wandb,则自动将训练指标记录到 W&B。

  • TensorBoardCallback:如果可访问tensorboard,则将训练指标记录到 TensorBoard。

  • CodeCarbonCallback:如果安装了codecarbon,则在训练期间跟踪模型的碳排放。

    • 注意:这些碳排放将包含在您自动生成的模型卡中。

有关集成回调以及如何编写您自己的回调的更多信息,请参阅 Transformers Callbacks 文档。

多数据集训练

表现最佳的模型是同时使用多个数据集训练的。通常,这相当棘手,因为每个数据集都有不同的格式。然而,CrossEncoderTrainer 可以训练多个数据集而无需将每个数据集转换为相同的格式。它甚至可以为每个数据集应用不同的损失函数。使用多个数据集进行训练的步骤如下:

  • 使用Dataset实例的字典(或DatasetDict)作为train_dataset(可选也作为eval_dataset)。

  • (可选)使用映射数据集名称到损失的损失函数字典。仅当您希望为不同的数据集使用不同的损失函数时才需要。

每个训练/评估批次将只包含来自一个数据集的样本。从多个数据集中抽样批次的顺序由MultiDatasetBatchSamplers枚举定义,该枚举可以通过multi_dataset_batch_sampler传递给CrossEncoderTrainingArguments。有效选项包括:

  • MultiDatasetBatchSamplers.ROUND_ROBIN:从每个数据集轮流采样,直到其中一个耗尽。使用此策略,可能不会使用每个数据集中的所有样本,但每个数据集的采样量是相等的。

  • MultiDatasetBatchSamplers.PROPORTIONAL(默认):按其大小比例从每个数据集采样。使用此策略,每个数据集中的所有样本都将被使用,并且较大的数据集会更频繁地被采样。

训练技巧

Cross Encoder 模型有其独特的特点,这里有一些技巧可以帮助您:

  1. CrossEncoder 模型很容易过拟合,因此建议使用像CrossEncoderNanoBEIREvaluatorCrossEncoderRerankingEvaluator这样的评估器,并结合load_best_model_at_endmetric_for_best_model训练参数,以便在训练结束后加载具有最佳评估性能的模型。

  2. CrossEncoder对强难负例(mine_hard_negatives())特别敏感。它们教会模型非常严格,例如在区分回答问题或与问题相关的段落时很有用。

    1. 请注意,如果您只使用难负例,您的模型在较简单的任务上可能会意外地表现更差。这可能意味着对第一阶段检索系统(例如使用SentenceTransformer模型)的顶部 200 个结果进行重排序,实际上可能比对顶部 100 个结果进行重排序产生更差的 top-10 结果。使用随机负例和难负例一起训练可以缓解这个问题。

  3. 不要低估BinaryCrossEntropyLoss,尽管它比学习排序(LambdaLossListNetLoss)或批内负例(CachedMultipleNegativesRankingLossMultipleNegativesRankingLoss)损失更简单,但它仍然是一个非常强大的选择,并且其数据易于准备,特别是使用mine_hard_negatives()

已弃用的训练

在 Sentence Transformers v4.0 版本发布之前,模型通常使用CrossEncoder.fit()方法和一个包含InputExampleDataLoader进行训练,其代码示例如下:

from sentence_transformers import CrossEncoder, InputExample
from torch.utils.data import DataLoader

# Define the model. Either from scratch of by loading a pre-trained model
model = CrossEncoder("distilbert/distilbert-base-uncased")

# Define your train examples. You need more than just two examples...
train_examples = [
    InputExample(texts=["What are pandas?", "The giant panda ..."], label=1),
    InputExample(texts=["What's a panda?", "Mount Vesuvius is a ..."], label=0),
]

# Define your train dataset, the dataloader and the train loss
train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=16)

# Tune the model
model.fit(train_dataloader=train_dataloader, epochs=1, warmup_steps=100)

自 v4.0 发布以来,使用CrossEncoder.fit()仍然可行,但它会在幕后初始化一个CrossEncoderTrainer。建议直接使用 Trainer,因为您可以通过CrossEncoderTrainingArguments获得更多控制权,但依赖CrossEncoder.fit()的现有训练脚本仍应正常工作。

如果更新后的CrossEncoder.fit()存在问题,您也可以通过调用CrossEncoder.old_fit()来获得完全相同的旧行为,但此方法计划在未来完全弃用。

与 SentenceTransformer 训练的比较

训练CrossEncoder模型与训练SentenceTransformer模型非常相似,但存在一些关键差异:

  • CrossEncoder训练中,除了scorelabel,名为scoreslabels的列也将被视为“标签列”。正如您在损失概览文档中看到的,某些损失需要特定标签/分数在具有这些名称之一的列中。

  • SentenceTransformer训练中,您不能在训练/评估数据集的列中使用输入列表(例如文本)。对于CrossEncoder训练,您可以在列中使用(可变大小的)文本列表。例如,这是ListNetLoss类所必需的。

有关训练SentenceTransformer模型的更多详细信息,请参阅Sentence Transformer > 训练概览文档。