MS MARCO Cross-Encoders
MS MARCO 是一个大规模信息检索语料库,它基于使用 Bing 搜索引擎的真实用户搜索查询而创建。提供的模型可用于语义搜索,即,给定关键字/搜索短语/问题,模型将找到与搜索查询相关的段落。
训练数据包含超过 50 万个示例,而完整的语料库包含超过 880 万个段落。
与 SentenceTransformers 一起使用
预训练模型可以像这样使用
from sentence_transformers import CrossEncoder
model = CrossEncoder("model_name", max_length=512)
scores = model.predict(
[("Query", "Paragraph1"), ("Query", "Paragraph2"), ("Query", "Paragraph3")]
)
与 Transformers 一起使用
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
model = AutoModelForSequenceClassification.from_pretrained("model_name")
tokenizer = AutoTokenizer.from_pretrained("model_name")
features = tokenizer(["Query", "Query"], ["Paragraph1", "Paragraph2"], padding=True, truncation=True, return_tensors="pt")
model.eval()
with torch.no_grad():
scores = model(**features).logits
print(scores)
模型 & 性能
在下表中,我们提供了各种预训练的 Cross-Encoders 以及它们在 TREC Deep Learning 2019 和 MS Marco Passage Reranking 数据集上的性能。
模型名称 | NDCG@10 (TREC DL 19) | MRR@10 (MS Marco Dev) | Docs / 秒 |
---|---|---|---|
Version 2 模型 | |||
cross-encoder/ms-marco-TinyBERT-L2-v2 | 69.84 | 32.56 | 9000 |
cross-encoder/ms-marco-MiniLM-L2-v2 | 71.01 | 34.85 | 4100 |
cross-encoder/ms-marco-MiniLM-L4-v2 | 73.04 | 37.70 | 2500 |
cross-encoder/ms-marco-MiniLM-L6-v2 | 74.30 | 39.01 | 1800 |
cross-encoder/ms-marco-MiniLM-L12-v2 | 74.31 | 39.02 | 960 |
Version 1 模型 | |||
cross-encoder/ms-marco-TinyBERT-L2 | 67.43 | 30.15 | 9000 |
cross-encoder/ms-marco-TinyBERT-L4 | 68.09 | 34.50 | 2900 |
cross-encoder/ms-marco-TinyBERT-L6 | 69.57 | 36.13 | 680 |
cross-encoder/ms-marco-electra-base | 71.99 | 36.41 | 340 |
其他模型 | |||
nboost/pt-tinybert-msmarco | 63.63 | 28.80 | 2900 |
nboost/pt-bert-base-uncased-msmarco | 70.94 | 34.75 | 340 |
nboost/pt-bert-large-msmarco | 73.36 | 36.48 | 100 |
Capreolus/electra-base-msmarco | 71.23 | 36.89 | 340 |
amberoad/bert-multilingual-passage-reranking-msmarco | 68.40 | 35.54 | 330 |
sebastian-hofstaetter/distilbert-cat-margin_mse-T2-msmarco | 72.82 | 37.88 | 720 |
注意:运行时是在具有 Hugging Face Transformers v4 的 V100 GPU 上计算的。